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ABSTRACT

The flow of an incompressible fluid over an obstacle will produce an oscillation in which buoyancy is

the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as

dynamically incompressible, even though there exists a mean static upward density gradient. Even in the

linear approximation---i.e., for small disturbances--this model explains a great many of the flow phenom-
ena observed in the lee of mountains. However, nonlinearities do arise importantly, in three ways: (i)

through amplification due to the decrease of mean density with height; (ii) through the large (scaled) size

of the obstacle, such as a mountain range; and (iii) from dynamically singular levels in the fluid field. These

effects produce a complicated array of phenomenamlarge departure of the streamlines from their equilib-

rium levels, high winds, generation of small scales, turbulence, etc.--that present hazards to aircraft and to
lee surface areas. The nonlinear disturbances also interact with the larger-scale flow in such a manner as to

impact global weather forecasts and the climatological momentum balance. If there is no dynamic barrier,

these waves can penetrate vertically into the middle atmosphere (30-100 kin), where recent observations

show them to be of a length scale that must involve the coriolis force in any modeling. At these altitudes,

the amplitude of the waves is very large, and the phenomena associated with these wave dynamics are being
studied with a view to their potential impact on high performance aircraft, including the projected National

Aerospace Plane (NASP). The presentation herein will show the results of analysis and of state-of-the-art

numerical simulations, validated where possible by observational dam, and illustrated with photographs
from nature.



1. INTRODUCTION

A gravity wave---the term "wave" is used loosely--is a disturbance in a fluid propagated by the force

of buoyancy. The simplest realization, at least in its linear formulation, is the wave on a density discontinu-

ity, such as air-water, that can propagate in two dimensions. In the atmosphere, or in the thermocline beneath

the surface of the oceans, the density varies continuously along the vertical--the fluid is then said to be strat-
ified--and in this environment a disturbance can propagate in three dimensions.

When a density-stratified fluid flows over a solid obstacle, the disturbance thus produced is called a lee
wave, or when the obstacle is a mountain range, a mountain wave. At this point, at the risk of belaboring

the obvious, we may distinguish a number of flows that are familiar to those acquainted with fluid dynamics.

(i) Two-dimensional homogeneous, incompressible, inviscid flow over solid boundaries--poten-
tial flow solved by the methods of the theory of functions of a complex variable.

(ii) Homogeneous, incompressible, viscous flow over solid boundaries, for Reynolds numbers
from small to large enough to produce turbulence.

(iii) Compressible flow over solid boundaries, notably airfoils, for Mach numbers from small to

large enough to produce shock waves.

The gravity-lee-wave problem for the atmosphere is different from all of these. In the first place, the

planetary boundar._y layer of the atmosphere in contact with the earth is characterized by a Reynolds number
of the order of 10', and is always and everywhere turbulent. On the scale of interest to us in this discussion,

viscosity plays no role. In the second place, the buoyancy of the fluid provides a mechanism for the hori-
zontal and vertical propagation of any disturbance away from the obstacle, so that the concern of lee-wave

researchers has traditionally been in this purely inviscid phenomenon, on a scale far larger than that of the

obstacle itself. The inviscid results have had remarkable success in predicting certain phenomena close to

the surface. Currently modelers are attempting to introduce a parameterized turbulent boundary layer, how-

ever, a complete theory for close-in and far-field behavior using such a model has not yet been
demonstrated.

The most familiar realization of a gravity lee wave is the so-called ship, or bow, wave on a water sur-

face. The counterpart for a continuously stratified fluid---say, atmospheric flow over a mountain--has

strong similarities to, and differences from, the ship wave, as brought out by Wurtele (1957) and Sharman

and Wurtele (1983). In fact, in the first of these articles it is shown that the simplest atmospheric case has

an asymptotic analytic solution. Figure 1 reproduces a satellite image of an atmospheric ship wave, where
the visualization is achieved by cloud condensation in the crests of the wave. Figure 2 is an example of the

simulation of this phenomenon at two vertical levels in the atmosphere. In the oceans, the passage of a sub-

marine through the thermocline sets up a lee-wave pattern that has been suggested as a possible means of

its detection from satellite by synthetic aperture radar. An interesting feature of the surface ship wave is the

characteristic transient--visualized in Figure 3 by the clusters of short waves at the leading edge (that is,

toward the right in the figure)--a configuration never present in the transient development of atmospheric
lee waves.

When a lee wave achieves a steady state---usually predictable from linear theory--we have called it

benign. The atmospheric ship wave is a prototypical instance of such a benign wave. However, through one
of a number of dynamic mechanisms that will be discussed later, the disturbance may fail to become steady,

and/or may generate a cascade of energy into higher wave numbers, finally breaking down into turbulence,

called clear air turbulence. These phenomena we have called malignant, a term not entirely facetious,

since much damage to aircraft and to lee-side surface structures has been attributed to them.
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Figure 1. Almosphcric ship wave pattern in the vicinity of the Aleutian Island chain. Note that these waves

are dominantly of the transverse type. Time and date of photograph unknown. (Sharman and Wurtelc, 1983)
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Figure 2. Contours of vertical velocity at (a) 2 km Co)4 km elevation after 800 time steps (200 rain) for
three dimensional R = 5.6 (R is the square root of the Richardson number at z = 0) simulation over a
Gaussian obstacle. The contour interval is 15 cm sec _. Each tic mark on the frame enclosing the pattern

indicates the location of a horizontal grid point. The obstacle is centered at the long tic marks. The contour

representing the obstacle shape is shown as the heavy circle at the origin. The contour shown is one for
which the obstacle height is 0.1 the maximum height. The thin lines represent the theoretical wedge angle

of the first mode. (Sharman and Wurtele. 1983)



Figure 3. Computer simulation of transient deep water surface ship wave pattern. Contours are surface ele-

vation (cm). Each tic mark on the frame enclosing the pattem indicates the location of a horizontal grid

point. Long tic marks indicate the center of the forcing. Lines indicating the theoretical wedge angle of

19.5 ° are also shown. (Sharman and Wurtele, 1983)

We may pause at this point to look ahead for a moment to inquire as to the sources of malignancy in lee
waves, and we shall find that there are three:

(i)

(ii)
(iii)

Amplification with height owing to the decrease of mean density;

Forcing of large magnitude, such as by flow over a high mountain;

Constraint of vertical propagation by a singular level in the atmosphere, such as a reversal of

wind direction, so that energy accumulates under this level.

We shall see that the malignancy introduced by each of these causes is characteristic and different from
the others.

2, THE DYNAMIC EQUATIONS

we now mm to the analysis of the dynamics of the flows that are the subject of this article, and in the

following we shall limit ourselves to two-dimensional atmospheric flow over obstacles infinite and uniform
in one direction, taken as the y-direction. The most satisfactory basic treatment is still that of Eliassen and

Kleinschmidt (1957). A stratified compressible fluid has four linear modes, two acoustic and two gravity,

which are so far apart in their frequencies that it is often convenient to treat them separately. This can be

achieved without sacrificing the static effect of compressibility, that is the existence of density stratification.

The governing equations are then as follows:



'+;. v_-- - p-_Vp+i
(la)

_-/p+v. (_') = 0
(lb)

-_o+ ;. vo = 0 (lc)

1

(ld)

where T is the ratio of specific heats, T = Cp/C,, Here the variable that may be unfamiliar is the potential

temperature theta, constant in adiabatic processes and equal to the temperature at some arbitrary reference
pressure level, usually taken as 1000 millibars. This formulation is called the anelastic system (Ogura and

Phillips, 1962). It has a serious problem from the point of view of this article in that the prerequisite for an

energy integral is that the initial potential temperature distribution is constanL Some progress in relaxing
this severe constraint has been made by Lipps and Hemler (1982) and Durran (1989).

A much simpler yet similar system is based on what is known as the Boussinesq approximation. This
arises from the observation that the role of the density variation in buoyancy, that is, where it is multiplied

by gravity, is much more important than as a factor of the acceleration terms. The resulting system takes the
form

+_'. V7 : -Vx+go
(2a)

_o+v. Vo = 0 (2b)

V. _ = 0 (2c)

p P
= -- , O = -- P0 = constant (2d)

Po Po

This is a very useful model for fluids in which the total mean percentile density variation is not great.

The dynamic consequence of the Boussinesq approximation is easily seen from the non-Boussinesq steady

state equations:

p;. V; : - Vp + g_p

V. p_'= 0

If we now define a new velocity

(3)



we have transformed equations in the new velocity u which are identical with the steady-state Boussinesq

set (2). Thus if a solution of the Boussinesq equations remains finite as it propagates upward in the atmo-

sphere, a solution without this assumption would grow without limit as z approaches infinity. This effect has

been understood for many decades (Lamb, 1932).

Whichever model is used, if the problem is flow over an obstacle, there is a nonlinear boundary condi-

tion to be satisfied on z = h(x), where h(x) describes the obstacle in this inviscid model, a purely kinematic

slip condition:

w (x, h (x)) = udh/dx (4)

The implicit character of this condition, except in certain special, idealized situations to be noted later,

makes an analytic solution very difficult, and for analytic work this condition is usually linearized in the

obvious way

w (x, O) = Udh/dx (5)

where U is the mean wind against the obstacle.

3. BENIGN WAVES FOR ZERO MEAN SHEAR

Keeping in mind this very important amplification with height, we will restrict ourselves for the
moment to the Boussinesq set (2). And having discarded much interesting compressible dynamics and

three-dimensional influence, we may now further assume small sinusoidal perturbations of the form with

vector wavenumber k = (k 1, k2) of the form

exp[i(klX + k2z- nt)]

When the atmospheric parameters are constant, the dispersion takes a somewhat unusual form, the rel-

ative (Doppler-shifted) frequency is

1

n- t:kl - Nkl + 2
where N is the buoyancy frequency, defined as

N 2 = -g (d_/dz) (6)
P0

Typically the associated buoyancy period in the atmosphere is about 10 rain. The corresponding vertical

group velocity is

3

c2 - -Nklk2 +kb 2
Thus vertical phase and group velocities are opposite in sign. In atmospheric flow over obstacles, the

vertical group velocity must be positive, in order to transport energy upward away from the obstacle. In the

steady state, when n = 0, we have

k2 = (N2/U2_ k21) 1/2

so that only waves for which k 1 is less than N/U that propagate upward. If U is increasing with height, as is

typical in the westerlies, the wave will propagate upward until the altitude is reached at which k2 = 0, then

die out exponentially. This case will be discussed in the next section.



Forsteady-stateperturbations, the linearized equations take the form

Uu x + U" w = -x x

Uw x = -x z- go

(Ta)

(7b)

N2 )w (7c)U%= (g

u x + w x = 0 (7d)

where U" = dU/dz. From these equations, we may infer two important relations (Eliassen and Palm, 1961):

(k---w)-U"u---w
bz

low = -Uuw

The first of these states that averaged over a wavelength, the pressure flux, or rate of working is propor-

tional by the mean velocity to the momentum flux. From the second relation, as is physically evident, a

positive rate of working must imply a negative momentum flux, that is, a downward transport of horizontal
momentum. From the two equations, we conclude that

(uw) = 0 (8)

the momentum flux is independent of height. (Obviously, only the inviscid assumption makes possible a
constant momentum flux.) This is a very important result for meteorology, since it is easy to show that

= (uw)

that is, the mean flow is altered directly by the momentum flux divergence. The benign wave that has

achieved a steady state therefore does not interact with the mean flow, although interaction has taken place

during the transient development. The momentum flux divergence introduced into the atmosphere by grav-

ity waves is large enough that it must be taken into account by weather prediction models. Without it, over

a few days, the simulated jet stream will grow to unrealistic speeds.

Consider a single wave component of wavenumber k with amplitude

w (x, z) = ff (z) exp (ikx)

and similarly for other variables. If these are eliminated, in eqs. (7), in favor of the vertical velocity w, there

results

_/'+ U k2 _ = 0 (9)

an equation first derived by Scorer (1949).

The theory of atmospheric lee waves began just 50 years ago with G. Lyra (1943). Assuming in (9) a

constant N and a constant U, Lyra composed by means of a Green's function solution the gravity waves rep-
resented to fit a doublet lower boundary condition. Lyra's original graph of his solution is presented in

Figure 4. The analytic expression for the result is rather complicated, consisting of an infinite series of
Bessel functions; but its asymptotic far-field expansion for the downwind side of the doublet is very simple:
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w- -Uh* z . 4--,-sin (r* - 3 )
r

Here r is the radial distance from the origin, and the distances r* and z* are dimensionless, having been

scaled by N/U. It is seen that the phase lines Nr/U = constant are semicircles. The upstream slope of these

phase lines satisfies the condition of downward momentum flux, and the fall-off with distance r represents
the spreading of the wave energy in two dimensions.
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Figure 4. Vertical velocity field for flow over a doublet. Initial mean wind is constant and stability is also
constant. (Lyra, 1943)

4. GROWTH OF A MALIGNANCY

This granddaddy of all atmospheric lee waves---that is, those resulting from the atmosphic structures

first treated by Lyra (1943) and Queney (1948)----has never, to my knowledge, been documented by obser-

vations from nature, whether because the wind speed in nature refuses to remain constant with height, or

because the moisture at higher levels is insufficient to visualize the characteristic upwind tilting pattern. In

any case, in theory or in nature, this would seem to be a truly benign wave, with amplitude falling off both

downstream and with elevation. However, we must remember that this solution satisfies the Boussinesq

equations, and we still have the exponential amplification effect contained in equation (3). A rough calcu-
lation, given a (constant) scale height for the mean density of, say, 8 kin, shows that amplification by a factor

of 50 to 100 will take place from about 60 to 90 km elevation. This should be sufficient to produce a malig-

nancy in even the smallest tropospheric perturbation. Some recent simulations by Bacmeister and Schoeberl

(1989), Figure 5, show that an upward-propagating small amplitude wave does in fact break down, and that

the chaotic region then propagates downward. It should be pointed out, however, that the precise dynamic
mechanism by which this occurs, and the character of the chaotic flow and its transition into turbulence,

have not been thoroughly investigated and are not understood. This point will be emphasized later in con-
nection with waves in the middle atmosphere.

The Lyra lee wave is also subject to the second type of malignancy, due to large forcing, a topic that has

received a great deal of attention in the literature. It was shown by Long (1955) that for this special case, U

and N constant, the nonlinear terms vanish identically, and therefore a solution of the linear equation is valid
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is 3 K. Position of ridge crest is indicated by black triangle in bottom frame. (From Bacmeister and Schoe-

berl, 1989)



for any amplitude. This provided a field day, or rather a field decade, for applied mathematicians. The

solutions are not trivial, since it is still required to satisfy the nonlinear kinematic boundary condition. Sim-

ilarity theory suggests, and dynamic analysis confirms (see equation (10)), that the condition for potential

malignancy in this model is

h* = Nh/U = O(1)

The precise critical value of h*--which is obviously an inverse Froude number--depends on the shape
of the obstacle. When this critical value of h* is attained or exceeded, some streamlines will have vertical

or negative slope, that is, where the horizontal component of the (total) flow velocity is zero or negative. In
the steady state solution, density contours coincide with streamlines, so that the vertical density gradient is

zero or positive. In nature, overturning must ensue, and the model as presented above ceases to be valid.

The most complete analytical treaUnent of this situation is that of Huppert and Miles (1969), one solution

from which is diagrammed in Figure 6.

Figure 7 is an often-reproduced photograph of this phenomenon in the lee of the Sierra Nevada. The
dust rising offthe floor of the Owens Valley visualizes the reversed flow and what is called the rotor cloud.

This region is, of course, extremely turbulent. The strong downslope winds, equally turbulent, can be dam-

aging to structures at the base of the mountain. An example of a site especially subject to downslope

windstorms is Boulder, Colorado, where peak gusts in excess of 100 mph have been recorded. This phe-

nomenon has been well observed and documented in a number of articles, notably Lilly (1978). (A

simulation of this situation is presented later in Section 6.) It cannot be said, despite the energy devoted to

the study of this spectacular phenomenon, that it is completely understood. It occurs only a few times per

year, yet the conditions for its occurrence would seem to be much more common. What triggers the violent

conditions has not been satisfactorily identified, although Clark and Peltier (1984) have made a valiant

attempt that will be referred to later.

Figure 6. Streamlines for stratified flow over a half-ellipse with Nh/U = 0.9: analytic solution of Huppert
and Miles, 1969.
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Figure7.Strongwave in the lee of the Sierra Nevada, looking southward along Owens Valley. The intense
downslope winds arc picking up dust from the valley floor and carrying it up into the rotor cloud, indicating

a reverse circulation in the valley, similar to a hydraulic jump on an interface. Photo by Bob Simons.

5. BENIGN (TRAPPED) WAVES IN SHEARING FLOW

We shall now turn to a second type of bertign wave pattern. Suppose we relax the restriction that the
mean flow is constant, and allow it to increase with height. In order to simplify the model, let the shear U'

> 0 be constant. The vertical structure equation is then

Ri_ ,2 = 0¢v" + -_

Here a new parameter has been introduced, the Richardson number

Ri = N2/ (U') 2

or the ratio of the buoyancy to the shear. Mathematically speaking, this equation has a turning point at

z = _-_/k

(10)

and a singularity at z = 0, where the mean flow vanishes.

The behavior of the solution will obviously be very differem at these two points. First consider the case

for which U > O throughout the domain of the model, and for which Ri >> 1/4, so that Kelvin-Helmholtz
instability is not present. It may be noted that the term in k2 represents the vertical accelerations; neglecting

this term corresponds to making the assumption that the disturbance is hydrostatic: no turning point, vertical

oscillations to infinity, no horizontal waves.

The solution of (10) regular at all values of z including infinity is

¢v = _ZKiq(kZ) where q = J(R i - 1/4)

11



Here K is a Bessel function of imaginary order and imaginary argument, real for real a_nunent. It is

oscillatory for argument less than order and exponentially decreasing for argument greater than order. It is

described and graphed in Wurtele et al. (1988), where references to the earlier literature are given. For real-

istic values of the Richardson number, this function has multiple zeros, from which it follows that for a

given level of forcing, say z = z l, there will be one or more wave numbers, say k = kI, for which resonance
waves will be forced. They will be of the form

W- k_lZKiq(klZ) sin (klX) (11)

that is, an infinite train of vertically oriented cells. These are called trapped waves, since the energy does

not propagate vertically, but only downstream. An illustration for an instance in which only a single wave

is excited is presented in Figure 8. Satellite imagery has taught us that the trapped lee wave is a fairly
common phenomenon in nature; for example, Figure 9 shows an instance in which the wave train extends
more than a thousand miles.
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Figure 8. Trapped wave forced by a witch of Agnesi profile cells of vertical velocity (contours 0.2 m/see)

at time 14,000 see (Ri = 8). (From Wurtele et al., 1987)

Figure 9. Satellite imagery showing lee waves originating from coastal and southem Sierra Nevada range
of California.
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Thetrapped wave is obviously not subject to malignancy of the first kind--that is, due to decrease of

mean density--since its vertical propagation is by definition limited. It is, of course, subject to breakdown

in nonlinear forcing, but there is a slight ambiguity here: Nh/U is no longer the only dimensionless group

to be considered; U'h/U also qualifies. The question of the roles of these two parameters has never been

properly posed and answered, perhaps because no one has ever demonstrated the development of a signifi-
cant difference in the onset of nonlinearity by the addition of shear to a model.

We now turn to a very different dynamic situation. Let the motion be governed by (10) as before, but

let the singular point z = 0 be within the field of flow, that is, let the mean flow reverse its direction at some
level above the obstacle. Since we are seeking disturbances stationary with respect to the obstacle, the level

z = 0 is that at which the wave speed is equal to the current speed (in this case, zero), known in hydrody-

namics as a critical level. The appropriate formal Bessel function solution to equation (10) is

_4P = _r_Zliq (kZ)

but since this is not physically meaningful at z = 0, we must consider the transient state. It was noted by

Bretherton (1966) and Booker and Bretherton (1967) that the vertical group velocit_ for an upward propa-
gating wave in this medium, assumed "slowly varying," is proportional to (n - kU)', and the vertical wave
number is proportional to (n - kU) -1, so that as the wave approaches the critical level, U = 0, it slows toward

zero group speed and its vertical wave length decreases toward zero. The wave can never become steady,

nor can it reach or penetrate the critical level, so that the wave energy accumulates beneath it. Some sort of
breakdown is inevitable, and the form it takes must be determined either by nonlinear analysis or by numer-

ical simulation. Brown and Stewartson (1982) and Grimshaw (1988) attempt this very difficult analysis, but

we find that simulation provides more information. An example is presented in Figure 10. In Figure 10(a),

at time step 300, the fields are still linear, approaching the (singular) solution (11). The details of the break-
down are examined in Landau and Wurtele (1992), but from Figure 10(b) it is clear that higher harmonics

have been generated near the critical level and are propagating downward. The final (and predictable) out-

come in this inviscid model is the equipartition of energy among all wave components that can be resolved

by the numerical scheme. This is a highly idealized model of forcing by a single wave component; when

the flow is forced over a limited two-dimensional obstacle, the result is that pictured in Figure 11. The

upwardly propagating disturbance sees the critical level as a barrier, and there is no dynamic mechanism for

downstream propagation, so that the breakdown occurs, and no matter how fine the computation grid, the

dynamic mechanism will generate motions too small to be resolved by it. This is a situation demanding a

rational, consistent parameterization of turbulence.
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Figure 10. Simulation of gravity wave forRi = 100, forced toward a critical ]eve] at z = 10 kin. (a) Linear
stage (400 time steps, 3.3 hr). (b) Nonlinear scattered stage (600 time steps, 5 hr). (c) Nondimensional
momentum flux profile at 600 time s[eps. At= 30 sec, Uo= 10 m/sec, U'= 10-3 sec -l. (Wurtele et al., 1992)
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1000 time steps, _ = 30 scc. (Wurtclc ct al., 1992)
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A dramatic example of the critical level dynamics in nature was the Arvin-Bakersfield dust storm of
December 20, 1977. An easterly wind blew over the Tehachapi Range, reversing at about 4.5-kin elevation

to westerly. The result in the San Joaquin Valley was a violent windstorm, raising a dense dust cloud to an
elevation of 1.5 kin, not only causing damage to property, but acting as a serious public health hazard. How-

ever, in nature, the most frequently encountered critical level occurs in a more complex situation, in the

stratosphere, above a troposphere in which the wind has increased with height. Well-documented cases of

this phenomenon exist for the Sierra Nevada in California and for the Front Range of the Rockies in Colo-
ratio. Clark and Peltier (1984) suggest that even though the stratospheric wind direction reversal is at an

elevation of greater than 9 kin, the strong downslope winds and associated clear air turbulence in the tropo-

sphere do not occur without it. Our own studies tend to confirm this observation, although the dynamics of

this relationship is not clear.

At this point we should mention the efforts that have gone into field experiments to characterize the

benign and especially the malignant lee waves. In these, extensive surface networks and special sounding
schedules have been supported by radar, aircraft, and sailplane observations, involving the collaboration of

many organizations and private individuals. The strength of the waves is evidenced by the altitudes

achieved by the (unpowered) sailplanes, 12 to 15 krn, with a ceiling here only because oxygen equipment

is not designed to operate at such low ambient pressures.

Among these may be cited the first such major, cooperative experiment, the Sierra Wave Project (Holm-
boe and Klieforth, 1956), followed by a number of investigations of the Colorado waves (Lilly, 1978). An

entire international experiment of the World Meteorological Organization, ALPEX, was devoted to the

exploration of Alpine lee waves. Currently, a European group is putting together a study of the Alpine

Foelm. It has become important that such field experiments concern themselves with the connection, if any,

between lower and middle atmospheric disturbances, as will become clear in Section 7.

6. THE SIMULATION OF LEE WAVES

Even in linear models realistic atmospheric conditions produce intractable problems, and for most of

these conditions, nonlinearities cannot be ignored. Although there have been attempts at laboratory experi-

ments, numerical simulation has become the methodology of choice in attempting to represent flow over

earth terrain. Since the first such simulation (Foldvik and Wurtele, 1967), some rather elaborate models and

techniques have been developed, and a brief account of certain of the features of these may be of interest.

As mentioned above in Section 2, a major problem is the failure of the anelastic set (1) to conserve

energy under all conditions. Two numerical procedures have been advanced to mitigate this defect, one by

Lipps and Hemler (1982) and one by Durran (1989). The former assume mean potential temperature to be

"slowly varying" with height, and to the extent that this is true, energy is conserved. However, in the strato-

sphere the variation is normally rapid, and the model requires testing under this condition. Durran proposes
a revised version in which

v. = o

is the continuity equation for purely adiabatic flow, with no restrictions on the distribution of the mean quan-

tities. This system conserves a form of energy closely related to the "true" energy. However, it becomes

necessary to solve a very complicated and messy elliptic equation.
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The problem of satisfying exactly the lower boundary condition is one that has been approached in two

ways. One is to retain a Cartesian grid, and to represent the obstacle by a series of Hocks with sides the size
of the grid. There is a question of whether a series of little impulses can properly represent the effect of a

smooth slope, and for this reason, researchers turned to methods by which the terrain itself could become a
coordinate surface. The usual way of achieving this is to define a new vertical coordinate

z = [z-h(x)]/[H-h(x)] (12)

that is zero along the bottom boundary and unity along the top (z =/-/). This works well in a number of mod-

els, but is subject to a penalty in computation for the following reason. Unless the model is fully

compressible, including the acoustic modes, there will be an elliptic equation for the pressure or for the
stream function to solve at each time step. Normally this is a simple Poisson equation, easily amenable to

block cyclic reduction techniques. However, the transformation (12) determines a coordinate system that is

not orthogonal, with the result that the elliptic equation for the pressure becomes horrendously messy, with
cross-differentiation terms. With this difficulty in view, Sharman et al. (1988) developed a numerical grid

generation scheme of the sort that is very familiar to aeronautical engineers, that preserves orthogunality

and the form of the Poisson equation. Two examples of the working of this scheme are presented in Figures

12 and 13. Figure 12 reproduces the flow over an ellipse, chosen for the challenge of the right-angle kink

in the streamline, and is to be compared with the analytical result in Figure 6. Figure 13 shows the flow over

a numerically assigned profile of the Sierra Nevada, with typical winter storm initial conditions, and is to

he compared with Figure 7.

L

_- 20

0
-10 0 10 20 30 40

x(km)

Figure 12. Streamlines for stratified flow over a half-ellipse with N/dU=0.9: simulation using terrain-fol-

lowing grid generation code (from Sharman et al., 1988).
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Figure 13. (a) Streamlines for flow over digitized profile of the Sierra Nevada, with typical winter storm
initial conditions. Co)Contours of vertical velocity (1 m/sec -1) corresponding to (a). (Sharman et al., 1988)

As examples of simulations by other groups with other codes, we may cite Peltier and Clark (1983),

Klemp and Lilly (1978), and Durran and Klemp (1983). A recent project sponsored by NASA Dryden Flight

Research Facility and managed by L. J. Ehemberger has specified six sets of terrain profiles and associated
sets of observed initial conditions for"blind" simulations by five different codes, in order to assess the com-

parative simulation results--the first ever test of this kind. The various runs are now under evaluation.

7. MIDDLE ATMOSPHERE DISTURBANCES

For many years the primary emphasis of researchers on lee waves was on the structure of the distur-

bance in the troposphere and lower stratosphere----not coincidentally, the region from which observations

from sailplanes and powered planes were available, and in which visualization was possible by means of

cloud formations. A pioneering effort to direct attention to higher atmospheric levels was that of Hines

(1960), followed by many articles by ionospheric workers. For example, Yeh and Liu (1972) treat problems

of ionospheric disturbances of presumably gravity wave origin. The chief means of detection was by

ionosonde. Since the ionosphere normally begins above 100 km elevation, this left the region between about

20 or 30 km to 100 km unexplored. This region has become known as the middle atmosphere, and its

exploration at that point in time awaited the development of adequate observation and measurement

technology.

Early (and not so early) radar engineers were annoyed when weather in the form of precipitation ele-
ments - known to them as "weather noise"-- interfered with the return signals from aircraft, and were later

outraged when even clear air contributed to this noise. One person's noise being another person's signal,
meteorologists were quick to adopt radar as one of their most valuable probes, ground based, airborne, and
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spacebome. The extent of use of this versatile tool in atmospheric research is impressively recorded in the

recent collection by D. Arias (1990), with surveys of UHF/VHF instrumentation, monostatic and Doppler,
by Roettger and Larsen (1990) and of their use in clear-air probing by Hardy and Gage (1990) and Gage

(1990). The development of middle-atmosphere radar came to fruition in the late 1970s and 1980s, and for

the past decade, the bulk of articles published on gravity waves----one can scarcely call them lee waves with-

out some evidence that they are in the lee of some specified sourceBhas been concerned with middle

atmospheric disturbances. Typically a radar can provide only a time sequence of vertical profiles of scatter-

ers, or a Doppler radar with a profile of velocities. Thus information as to the vertical wave length is much
more abundant than information about the horizontal wave length. The radar yields many such profiles, so

that statistics are available in the form of vertical spectra, and there is considerable evidence that these

energy spectra follow the power law

E(m) =Am *-1 [1 + (m/m*)3] -1 (13)

where m is the vertical wavenumber, and m* is a scaling parameter, different for troposphere, stratosphere

and mesosphere. (Tentatively, one may take m* as 1, 0.2, and 0.05 cy/km, respectively.) Figure 14 provides

an example of a data set conforming to this spectral distribution. From the form of (13), it is evident that the

"energy content" spectrum, mE(m), has a maximum for m equal to about 0.8 m*. For the middle atmo-

sphere, this locates the maximum power in the spectral range of gravity waves; and a simple dimensional
argument suggested that m -3 is the form an energy spectrum would take in a regime of wave-breaking,

called saturation. This observational result resonated with theoretical arguments (e.g., Lindzen, 1981) that

breaking in the middle atmosphere was to be expected, owing to the first mechanism, amplification due to

decreasing density with height, as discussed in the introduction.
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However, this is a large leap to be achieved by what is essentially a wave of the ann, and there remains con-

siderable disagreement. The literature in this area is now voluminous. Review articles by Fritts (1984) and
Dunkerton (1989) provide some orientation; most issues of the Journal of Geophysical Research now con-

rain articles on this or related problems.

There is some information available on the horizontal scale of these middle atmosphere disturbances.

The space shuttle reenters the atmosphere at a small inclination to the horizontal, and its accelerations are
recorded. From these, variations in drag, and hence in air density, can be inferred. Indirect as this evidence

is, it presents a reasonable and consistent picture. Figure 15 shows a horizontal spectrum derived from seven

reentries by Fritts et al. (1989). These results suggest that two orders of magnitude of wavelength, from 10
to 1000 kin, are present in the middle atmosphere disturbance spectrum. Supporting data are provided by

Fetzer (1990) in an analysis of limb-scanning IR measurements. Fetzer calculates no spectra, and he can

report only temperature variations; but it is clear that horizontal scales up to 1000 km, and vertical scales of
the order of 10 km, are present. And the excursions are very large: up to 20 ° C.
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Figure 15. Mean horizontal wavenumber spectrum for the seven reentries in (a) standard and Co) variance

content form. A slope of-2 is shown for reference in (a). (Fritts et al., 1989)

As was anticipated theoretically, scales of this magnitude alter the rules of the game. When the time
scale, here taken as the length scale divided by the wind speed, is of the order of the pendulum day, the rota-
tion of the earth must be accommodated in the dynamics, and the equations (1) become altered by the

addition of a Coriolis acceleration, which meteorologists write as

fk'x_

The Coriolis parameterfis the rate of rotation of the Earth about the local vertical--about 10"4 per
second in middle latitudes---and k is the local vertical unit vector. Of course, f will vary with latitude, but

the scale of these disturbances is still too small to be affected by this variation. Thusf will be taken as con-

stant, and the perturbations arising out of this model are called inertia-gravity waves. It should be

remembered that in the middle atmosphere kinematic viscosity and conductivity, both inversely propor-

tional to density, will play a role in the dynamics of scales of motion for which they would be totally

negligible at lower altitudes. Thus we are not attempting here to simulate middle-atmosphere disturbances,
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but to inquire into the dynamics of vertical propagation to determine the conditions under which gravity and
inertia-gravity waves will or will not actually propagate to these levels--assuming for the moment that their
source lies at lower levels.

We will not write out the nonlinear equations as modified by the Coriolis term, noting only that the

growth in amplitude with decreasing density holds just as it did for gravity waves, and thus the middle atmo-

sphere is as vulnerable to wave-breaking and turbulence with inertia-gravity waves. However, the

Boussinesq dynamics are considerably altered (Jones, 1967). Equation (10) is replaced by

:
[,k_U-/U,2z) + (Ri- k2z 2) • = 0

Here the single singularity at z = O, multiplying only the first order derivative, has become innocuous,

but two new singularities at

z = "t-,J--_,, (14)
kU

have been introduced. This equation is amenable to analysis (Grimshaw, 1975; Tanaka and Yamanaka,

1984; Wurtele et al., 1991), the solution being the hypergeomeuic function, and it is not difficult to show

that a monochromatic wave impinging on the lowest singular level from below will exhibit a behavior quite

similar to that of Figure 10. However, as with the case of the gravity-wave critical level, simulation shows
results that are not anticipated by analysis. There is a major difference from the critical level, in that the

level of the singularities (14) depend on the horizontal wavenumber k, so that when the disturbance is forced

by a continuous spectrum, each component will have its own singular level. We should not expect for iner-

tia-gravity waves, then, the explosive behavior characterizing the critical level for gravity waves, as

represented in Figure 10Co). Corresponding to this situation we now have that of Figure 16, in which there
is neither wave-trapping, nor nonlinear reflection, but rather an increase in horizontal scale as the distur-

bance propagates upward. There is no indication of malignancy.

We have yet to consider disturbances originating between the singular levels (14). Linear theory shows,

and simulation confirms, that upward propagation is greatly inhibited in this regime. However, if the per-
turbation has sufficient energy to reach the zone beyond all critical levels, we find a startling behavior. This

should be a situation in which the system seeks to find a remnant trapped wave lee wave, as in Figure 8, but

the linear solution provides none. What the simulation shows (Figure 17) is that, despite the fact that the

forcing is steady, the response is a periodic "lee" wave, where the quotation marks are required because dur-

ing phases of the period, different sides of the obstacle are acting as "lee." Since once it has escaped beyond

the singular level, the wave may propagate freely upward, this result may be of some importance in middle

atmospheric dynamics.
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8. LOOKING FORWARD

Future research in gravity and inertia-gravity waves will probably be dominated by the study of distur-

bances in the middle atmosphere, for several reasons. First, this is the region in which there will be the

greatest incidence of new and exciting observations. Not only are the number of radars and lidars increasing
that are capable of sounding to high altitudes, but high-performance aircraft are now penetrating into the

middle stratosphere, and, in the case of the shuttle, upper stratosphere, returning data, and presenting prac-
tical motivation for an understanding of these atmospheric layers. In fact, such aircraft, properly

instrumented, will be used as probes to study the region. If there is, in fact, a National Aerospace Plane in

our future, it will have to traverse the middle atmosphere. And planes traveling at Mach numbers five to ten,

or even more, times those of commercial aircraft will sense pemarbations of scales never before thought of

as potentially impacting aircraft.

The analysis of inertia-gravity waves, and even more, their simulation, offer many unsolved and prob-

ably unanticipated problems. Observations alone will not tell us the origin of the middle atmosphere

disturbances; they must be interpreted in terms of the theoretical models, as realized in nonlinear simula-
tions. Is the source at the surface of the earth; does it lie in fronts and storms; is it due to disequilibria of the

jet stream; is it all of these, or in some phenomenon that no one has yet mentioned in this connection?

One of the major problems confronting numerical weather prediction and climate models has been, and
will for a time continue to be, the incorporation of the atmosphere above the tropopause. As mentioned

above, the momentum flux convergence produced by gravity waves is now an essential parameterization in
weather prediction. Similarly, the flux fields, momentum and temperature, of inertia-gravity scale in the

middle atmosphere will he important in the circulation of that region. This question is inevitably linked with
that of the breakdown of these waves and the formation of and character of the resulting turbulence. Mod-

eling of this problem has begun, e.g., Gavrilov and Yudin (1992), and we will probably soon see some of
the huge, computer-intensive turbulence code simulations in this context that we have recently seen for

problems associated with boundary layer flow and convection.

So there is plenty of work for a wide range of talents, scientists and engineers, experimenters, and the-

oreticians. Everyone is welcome to participate.
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